
                                 Triangular lattice 

 

                                       Graphene 
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Graphene is an atomic-scale honeycomb lattice carbon atoms monolayer. 

Conduction via p-orbitals of carbon. Tight binding. 
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Artificial Graphene 

Weak coupling 

Consider a 2D electron gas in a potential U(r) with hexagonal (triangular) 

symmetry and spacing L. 

The lattice translation vectors are  

L1 = (L, 0)  

L2 = (L/2,√3L/2) 

)(
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2

rU
m

p
H 
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There are two independent reciprocal lattice vectors in the Brillouin zone  
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Below  I measure energy in units of the bandwidth: 
m

L

m

K
E
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We assume a periodic potential with a single Fourier component 

      rGrGrGWrU  321 coscoscos2)(

This potential has nonzero matrix elements only between states |k> and  

|k ± Gi>  with matrix elements given by W. 
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Perturbation Theory. Practically works up to W = W/E0  =2 

A state close to the Dirac point, q ≪ 1, is 

described by degenerate perturbation theory as 

rqK
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)( WrUPotential energy: 

Kinetic energy is a weak 

perturbation on the potential 

energy. 
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Diagonalize potential energy 

The eigen-energies of the U-matrix are (-W, -W, 2W).  

 

There is the  double degenerate subspace!!!! 
 

In order to project in the double degenerate subspace of U we define: 
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Projecting the kinetic energy to this basis and shifting the zero 

energy level to E0 one finds: 
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is the Fermi-Dirac velocity 
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Hence, in the Pauli matrix (pseudo-spin) representation the effective low 

energy Hamiltonian reads: 

)( yxxz qqvH  



)( yxxz qqvH  

One can perform the unitary transformation H → T †HT , where T represents two 

subsequent π/2 rotations around x- and y-axes in the pseudo-spin space: 

However, in what follows we will use the “blue” form  as it is slightly more convenient 

for the study of the edge states. 

qσ  vH
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This transforms the Hamiltonian to the conventional form of a 2D Dirac Hamiltonian 
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Numerical diagonalization of the Hamiltonian is straightforward. 

The hole dispersion along a particular 
contour in the BZ,  W=W/E0 =1 

Two Dirac points of opposite parity. 
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http://upload.wikimedia.org/wikipedia/commons/0/0b/GrapheneE2.png


Map of the total charge density (in units 1/L2) at 

the chemical potential tuned to the Dirac point. 

The average hole density is <n> = 8/3L2. 

At L = 50nm the average density is 1.1 × 1011cm−2. 

Even when the potential is strong, namely W = W/E0 = 1−2, the dispersion is 

rather close to the result obtained by perturbation theory. The charge density 

plot is fully connected with empty spots at positions of the potential maximums. 
So, in clear contrast to natural graphene at W  < 2 the system is much closer to 

the nearly free electron regime than to the tight-binding one. 
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Chiral edge states in toplogical insulator 

28 



Topological insulator 
29 

Let us switch on the spin orbit interaction Hso.  

Whatever is the microscopic mechanism of the interaction the interaction  

must satisfy the following  conditions 

 

1)The interaction depends on spin s. This is true spin, not pseudospin. 

2)The interaction is time reversal invariant. 

3) The intercation is space inversion invariant 

Therefore matrix element of Hso between  two plane wave must be of the  

following form 

)]([      || 12 spppp 21  iHso

iGpp 1 2

An additional condition follows from the Bloch’s theorem. 

Since the spin-orbit interaction  has period of the lattice the matrix 

element  of Hso  is nonzero only if 



Near the Dirac cone 

    ][    1||2 1 zso siiH    sKK 2

Hence the effective 3x3 spin-orbit Hamiltonian reads 
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Projecting this to the degenerate pseudospin states |a> and |b> we find 

yzso sH 2
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yzyxxz sqqvH  2)( 

Total Hamiltonian 

This is the K-Dirac cone, for the K’-Dirac cone we have to replace v→-v (opposite 

parity). 

zzηs-vH 2qσ 

Due to     the gap is opened at Dirac points   
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The energy is 
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2222 )2(
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qv

sqv z

If chemical potential is inside the gap this is  insulator 

What is topological about this? 

Why this is different from usual band insulator? 

One can perform the unitary transformation H → T †HT to transform to the 

conventional form   



Topological chiral edge states 

Lateral confinement: let us limit the 2D crystal by the infinite wall potential 
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 the edge state at  y > y0 

yxiq
eeA x 




 









   

Solution of Dirac Eq.  H  gives 



















x

z

x

vq

sv
i

vqv

2

1

22222

32 

yzyxxz sqqvH  2)( 



In the explicit coordinate form this is 
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Let us tune the position of the wall 

Hence, to satisfy (x,y0)=0 we need only  to 

impose 
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xvq  /v,  ,2/1  zs

For the opposite parity Dirac cone the edge solution has different chirality 

Topological protection: 

The edge states are found at a special position of the confining wall. An explicit 

calculation at a different wall position/shape is more involved since the calculation 

must include admixture of high momentum states to the wave function. However, it 

is obvious that a variation of the wall position/shape does not influence the edge 

states since they are topologically protected. 
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The edge states support the spin polarized  current at the edge of system.  
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